
In this case, J < 0, i.e., the mass of the disperse phase increases. The rate of inter- 
phase mass transfer is determined in the form 

J = - -6p~/(6pp~ a = Ko exp  (--E/RTp), ( 2 . 7 )  

where a is the change in mass due to oxidation of a particle per unit time per unit of its 
area, K 0 is a pre-exponential multiplier, E is the activation energy, and R is the universal 
gas constant. 

From (2.7), ? = a~/(3~). Let us evaluate the upper boundary of this ratio. At 600~ in 
dry air, a 0.21.10 -4 kg/(m2.sec) [7]; for the particle sizes 6 = i0-~-i0 -4 m characteristic 
of power plants, the ratio 7 ~ i0-~-i0 -5 is so low that ej can be ignored in the equation 
for turbulence energy (1.3). 

Thus, the direct effect of interphase mass transfer on turbulence energy must be con- 
sidered in the case of intensive phase transformations. 
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ONSET OF THERMOCApILLARY CONVECTION IN A TWO-LAYER SYSTEM WITH THE RELEASE 

OF HEAT AT THE INTERFACE 

A. A. Nepomnyashchii and I. B. Simanovskii UDC 536.25 

The onset of thermocapillary convection in a two-layer system with heating from below 
or above was studied in [1-4]. It was established that instability of the equilibrium state 
can result in both monotonic and oscillatory disturbances. Under certain conditions, only 
oscillatory instability is possible [3]. The presence of heat sources or sinks at the inter- 
face between the media - which may be due to a chemical reaction, absorption of radiation, 
etc. - has a significant effect on the stability of the system. The problem of the stability 
of the equilibrium state with surface heat release was solved in [5] in regard to monotonic 
disturbances. 

Here, we study the effect of surface heat release and heat absorption on the stability 
of the equilibrium of a two-layer system in th~ presence of both monotonic and oscillatory 
instability. We will examine the evolution of oscillatory neutral curves for several char- 
acteristic cases. It is established that the heat release has a stabilizing effect on both 
monotonic and oscillatory disturbances. 

i. Let the space between two horizontal solid plates - on which constant and different 
temperatures are maintained (temperature difference equal to 8) - be filled by two layers of 
viscous immicible fluids. The x axis is directed horizontally, while the y axis is directed 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, pp. 
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vertically upward. The equations of the solid boundaries are y = a I and y = -a 2. Thermo- 
capillary convection occurs in the presence of gravitational force, which ensures the exis- 
tence of a plane interface. The effect of buoyancy on convection in this case is negligible 
compared to the thermocapillary effect which occurs for thin liquid films. At the interface 
of the media y = 0, assumed to be nondeformable, we assign a constant level of heat release 
Q0 (Q0 < 0 corresponds to heat absorption). The dynamic and kinematic viscosities, thermal 
conductivity, and diffusivity: N~,~m, xm, %m (m = 1 for the upper liquid and m = 2 for the 
lower liquid). The surface tension is linearly dependent on temperature: o = o 0 - =T. 

Mechanical equilibrium is characterized by a constant value for the vertical tempera- 
ture gradients A m (m = i, 2), which are determined from the heat-balance equation at the 
interface--XlA i + • = Qo and the relation A l a  i + A~a 2 = -- sO (s = I with heating from below, 
s = -i with heating from above): A i = --(sO• 2 + Qoa~)/(ai• + a~• A2 = --(sO• i -- Qoali/(ai• + a2• 

We introduce the notation: N = ~1 /~2 ,  V = Vl /Vl ,  • = •215  % = %1/%2, a = al/a i. As units of 
length, time, the stream function, and temperature we choose ai, ai~/v~, % and 8. The dimen- 
sionless temperature gradient in equilibrium Ai = --(s + Qa• + • in the upper liquid and 
A~ ------• -- Q)/(i + • in the lower liquid (Q = Qoal/O• 

We subject the equilibrium state to perturbations of the stream function ~ and temper- ! 
ature Tm: 

( ~ / ,  T~', ~2'~ T2') = (~(Y) ,  T~(y), ~2(Y), T2(y)) e xp [ i kx  - -  (s + i~)t]  

(k is the wave number, ~ + im is the complex decrement). 
I 

and T m have the form [4] 

(~ + i o ) ) D ~  = - -  d~nDl~pm, 

e m 
2_ (~ + io) T~  - -  ikr = >F DTm 

The linearized equations for ~ 

(m = 1, 2), 
(I.i) 

w h e r e  D ~ d~/dy 2 k 2, d 1 = e 1 ~ l ,  d~ ~ i /v ,  e l = t / i ,  Pr = vl/X1 i s  t h e  P r a n d t l n u m b e r .  

Using the prime to denote differentiation with respect to y, we write the conditions on 
the solid boundaries: 

y = t :  ~1 ~ i '  = Ti ~ 0, y = - -a :  ~2 ~ '  = T~ ~ 0 ( 1 . 2 )  

and on the interface 

y = 0 : ~ 1  = ~2  = 0 ,  ~ 1 '  = ~ 2 ' ,  T1 : TI, (1.3) 
•  , ~ g i " - - i k  Mr T1 = ~2" 

(Mr = qM/Pr ,  M = ~ 0 a i / q l X 1  i s  t h e  M a r a n g o n i  n u m b e r ) .  The b o u n d a r y  o f  i n s t a b i l i t y  i s  d e t e r -  
m ined  by  t h e  c o n d i t i o n  ~ = 0 .  

2 .  B o u n d a r y - v a l u e  p r o b l e m  ( 1 . 1 ) - ( 1 . 3 )  h a s  an  a n a l y t i c a l  s o l u t i o n  [5 ]  f o r  t h e  c a s e  o f  
monotonic instability (X = ~ = 0). The expression for the critical number Mr in our notation 

has the form 8k ~ (1 + • (~D 1 + D )  (~B 1 + BI)  

Mr (k) = ~ Pr[s (ZC 2 -- C~) -- Q (XC= + a• ] ' ( 2. i ) 

where 

8 1 c l - - k  s 2 c l - - k a  s~--~3r s~--k3a3c~. 
BI=_s =7;BI- 4_klan, Cl 7 =P ; s ~ _ k 2 a  2 ~ 

D ~ = c g s l ;  D 2 = c J s l ;  s ~ = s h  k; s~ = s h k a ;  c ~ = c h  k; c 2 = c h k a .  

In analyzing the effect of the surface heat release on monotonic stability, it is con- 
venient to introduce the parameter 

MrQ = Mr Q = 
~in i. (2.2) 

In contrast to Q, the parameter MrQ is independent of 9 and remains constant with a change 
in the temperature difference between the upper and lower boundaries of the system. Dif- 
ferent values of MrQ correspond to different rates of heat release at the interface. In the 
new variables, Eq. (2.1) is written as 
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8k 2 (i + • (Pr• -1 (• 1 + D 2).(NB 1 + B 2) + MrQ (%C ~ + a~C1) ( 2 . 3  ) 
Mr (k) = s 

(xc2 - G) 
I t  i s  e v i d e n t  t h a t  h e a t  r e l e a s e  a t  t h e  b o u n d a r y  (MrQ > O) a l w a y s  s t a b i l i z e s  t h e  m o n o t o n i c  
mode o f  i n s t a b i l i t y ,  w h i l e  h e a t  a b s o r p t i o n  (MrQ < O) d e s t a b i l i z e s  i t .  T h i s  e f f e c t  can  be 
u n d e r s t o o d  on t h e  b a s i s  o f  q u a l i t a t i v e  a r g u m e n t s .  The a p p e a r a n c e  o f  a h o t  s p o t  a t  t h e  bound-  
a r y  l e a d s  t o  i n f l o w  o f  l i q u i d  f rom t h e  d i r e c t i o n  o f  t h e  s o l i d  b o u n d a r i e s  and i t s  s p r e a d i n g  
o v e r  t h e  i n t e r f a c e .  I f  t h e  i n t e r f a c e  i s  h e a t e d  r e l a t i v e  t o  t h e  s o l i d  b o u n d a r i e s ,  t h e n  t h e  
r e s u l t i n g  i n f l o w  o f  c o l d e r  l i q u i d  l e a d s  t o  d e c a y  o f  t h e  t e m p e r a t u r e  p e r t u r b a t i o n .  I f  t h e  
i n t e r f a c e  i s  c o o l e d ,  t h e n  t h e  i n f l o w  o f  warmer  l i q u i d  i n t e n s i f i e s  t h e  t e m p e r a t u r e  p e r t u r b a -  
t i o n .  

Let us discuss the special case X = I, a = i. It was established in [3] that there 
is no monotonic instability without the heat release. As can be seen from Eq. (2.3), when 
heat is released the boundary of monotonic instability exists: 

M r Q =  8k~(l + ~ ) ( i ~ )  sic z - k  
Pr• s~t1_ka (tz= sllcl) (2.4) 

and is independent of Mr. The problem must be solved numerically to obtain the boundaries 
of oscillatory instability. 

We will examine a system with the parameters q = v = 0.5; • = X = Pr = a = i. We will 
restrict ourselves to the case of heating from below. Monotonic instability occurs at MrQ < 
MrQ, < 0, where MrQ, is found from the extremum of Eq. (2.4). At MrQ > MrQ, (in particular, 
in the absence of heat absorption), oscillatory instability is the only possible mechanism 
by which the equilibrium state could become unstable. To analyze the effect of heat release 
on convective stability, we will calculate neutral curves for fixed Q (Fig. i). At Q > 0, 
the neutral curve stabilizes with an increase in Q; no monotonic neutral curve appears. 
Conversely, at Q < 0, with an increase in [Q] the oscillatory neutral curve shifts to the 
region of smaller Mr. Moreover, a monotonic neutral curve does appear at IMrol = MrlQ I > 
IMrQ, I. Figure i shows oscillatory (dashed lines) and monotonic (solid lines~ neutral 
curves constructed for the following Q: 0) line I; 2) 0.015; 3) 0.03; 4, 5) -0.02; 6, 7) 
-0.025; 8, 9) -0.03. With an increase in IQI (Q < 0), the monotonic mode of instability 
destabilizes the equilibrium state less intensively than the oscillatory mode. Figure 2 
shows graphs of the dependence of the frequency of oscillation on the wave number for Q = 
0; 0.015; 0.03; -0.02; -0.025; -0.03 (lines 1-6). Figure 3 shows the dependence of values 
of Mr,, minimized with respect to k, on MrQ for the oscillatory (line i) and monotonic (2) 
modes of instability. The oscillatory mode is most dangerous at MrQ > MrQ*, while monotonic 
disturbances are the most dangerous in the region MrQ < MrQ*. 

Now let us examine a system of real liquids, consisting of transformer oil and formic 
acid. The system has the following parameters: D = ii.i, v = 15.4, ~ = 0.41, X = 0.714, 
Pr = 306, a = 1.667. In the absence of heat release (Q = 0), the system is unstable against 
monotonic during heating on the side of both the first liquid and the second liquid (line i 
in Fig. 4). In addition, oscillatory instability may develop in the longwave region (line 
2). At Q > 0, an increase in Q is accompanied by stabilization of all fragments of the 
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neutral curve: Q = 0.015 (lines 3 and 4); 0.03 (5, 6). The fragment of the line 3 for 
s = I is not presented due to the proximity to line i in the scale of the graph. At Q < 0, 
destabilization takes place: Q = -0.03 (lines 7 and 8); -0.09 (9, I0); -0.3 (ii, 12). 
Throughout the investigated region of Q, the minimum of the neutral curve is realized for 
monotonic perturbations. The insert in Fig. 4 shows the dependence of m on k for oscilla- 
tory perturbations (the numeration of the lines for the insert corresponds to the numeration 
of the lines in the main part of the graph). 

Thus, the conclusion reached regarding the stabilizing effect of heat release and the 
destabilizing effect of heat absorption is valid not only for monotonic perturbations but 
also oscillatory perturbations. 
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